Test \#2

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Show your work and simplify your solutions. Where appropriate, your solutions should include definitions and references to theorems.

1. (a) Evaluate $\cosh \frac{\pi i}{2}$.
(b) Find all complex values z such that $\sin z=\frac{i}{2}$.
2.(a) State the Fundamental Theorem of Calculus for contours.
(b) Let γ be the part of a circle about the origin that joins the points $z=-1+i$ to $z=1+i$ traversed with positive orientation. Compute $\int_{\gamma} \frac{1}{z} d z$.
3.(a) State Cauchy's Integral Theorem.
(b) State the Deformation Invariance Theorem.
(c) Prove that Cauchy Integral Theorem implies the Deformation Invariance Theorem.
2. Evaluate the following integrals:
(a) Let γ be the boundary of the square with vertices at $(\pm 1, \pm i)$ traversed once clockwise.

$$
\oint_{\gamma} \frac{\sin z}{(4 z+\pi)} d z
$$

(b) Let $\gamma=\{z \in \mathbb{C}| | z-2 i \mid=1\}$ with positive orientation.

$$
\oint_{\gamma} \frac{z+i}{z^{3}+2 z^{2}} d z
$$

(c) Let γ be the circle of radius 2 , centered at the origin, traversed once counterclockwise.

$$
\oint_{\gamma} \frac{2-z}{z^{2}-z} d z
$$

5. Let z_{0} denote a fixed complex number, and let γ_{R} be a circle of radius R , centered at the point $z=z_{0}$, with positive orientation. Derive the following formula:

$$
\oint_{\gamma_{R}} \frac{d z}{\left(z-z_{0}\right)^{n}}=\left\{\begin{array}{cc}
0 & n \neq 1 \\
2 \pi i & n=1 .
\end{array}\right.
$$

