Test #2

You are being evaluated on the presentation, as well as the correctness, of your answers. Try to answer questions in a clear, direct, and efficient way. Show your work and simplify your solutions. Where appropriate, your solutions should include definitions and references to theorems.

1.(a) Evaluate $\cosh \frac{\pi i}{2}$.

(b) Find all complex values z such that $\sin z = \frac{i}{2}$.

- 2.(a) State the Fundamental Theorem of Calculus for contours.
- (b) Let γ be the part of a circle about the origin that joins the points z = -1 + i to z = 1 + i traversed with positive orientation. Compute $\int_{\gamma} \frac{1}{z} dz$.

3.(a) State Cauchy's Integral Theorem.

- (b) State the Deformation Invariance Theorem.
- (c) Prove that Cauchy Integral Theorem implies the Deformation Invariance Theorem.
- 4. Evaluate the following integrals:
- (a) Let γ be the boundary of the square with vertices at $(\pm 1, \pm i)$ traversed once clockwise.

$$\oint_{\gamma} \frac{\sin z}{(4z+\pi)} \, dz$$

(b) Let $\gamma = \{ z \in \mathbb{C} \mid |z - 2i| = 1 \}$ with positive orientation.

$$\oint_{\gamma} \frac{z+i}{z^3+2z^2} \, dz$$

(c) Let γ be the circle of radius 2, centered at the origin, traversed once counterclockwise.

$$\oint_{\gamma} \frac{2-z}{z^2-z} \, dz$$

5. Let z_0 denote a fixed complex number, and let γ_R be a circle of radius R, centered at the point $z = z_0$, with positive orientation. Derive the following formula:

$$\oint_{\gamma_R} \frac{dz}{(z-z_0)^n} = \begin{cases} 0 & n \neq 1, \\ 2\pi i & n = 1. \end{cases}$$